好吊视频一区二区三区-国产精品V欧美精品V日韩精品-老司机亚洲精品影院-国产精品视频免费播放

物聯傳媒 旗下網站
登錄 注冊
RFID世界網 >  新聞中心  >  物聯網新聞  >  正文

物聯網時代五種常見生物識別優劣勢大對比

作者:IOTER
來源:通信世界網
日期:2017-05-15 09:08:29
摘要:現今指紋圖像采集的技術主要為射頻指紋識別技術。射頻傳感器技術是通過傳感器本身發射出微量射頻信號,穿透手指的表皮層去控測里層的紋路,來獲得最佳的指紋圖像。因此對干手指,汗手指,臟手指等困難手指通過可高達99%,防偽指紋能力強,指紋敏感器的識別原理只對人的真皮皮膚有反應,從根本上杜絕了人造指紋的問題。

  現今指紋圖像采集的技術主要為射頻指紋識別技術。射頻傳感器技術是通過傳感器本身發射出微量射頻信號,穿透手指的表皮層去控測里層的紋路,來獲得最佳的指紋圖像。因此對干手指,汗手指,臟手指等困難手指通過可高達99%,防偽指紋能力強,指紋敏感器的識別原理只對人的真皮皮膚有反應,從根本上杜絕了人造指紋的問題。

  這個最近火在移動支付方面的生物識別技術,因其防偽性高、生物特征唯一、核心芯片不斷縮小等方面,已廣泛用于平板、手機甚至手表等移動端,并將會在未來主流生物識別市場占有一席之地。將手指放在手機屏幕上,隨手一劃就能確認支付,將安全度與便捷性完美結合。但是,它還有一個強大的對手,人臉識別。

  人臉識別,阿里騰訊認準的生物識別方式

  作為未來主流生物識別方式之一,人臉識別最大的優點是對硬件幾乎沒要求,即使幾百元的手機攝像頭也可以滿足,剩下的只是軟件問題。未來的結果就是,你在結賬時,對著收銀臺的攝像頭左看看右看看,支付就這樣完成了。這種認證方式在未來移動支付時代具有高便捷性,加上硬件要求極低,足以讓阿里騰訊看好它的未來。

  自動人臉識別的經典流程分為三個步驟:人臉檢測、面部特征點定位、特征提取與分類器設計。在深度學習出現以前,人臉識別方法一般分為高維人工特征提取和降維兩個步驟。2014年之后,主要技術路線為深度學習。

  Google發表于CVPR2015的工作FaceNet采用了22層的深層卷積網絡和海量的人臉數據(800萬人的2億張圖像)以及常用于圖像檢索任務的Triplet Loss損失函數。值得一提的是,人臉類別數達到800萬類,FaceNet在LFW數據集上十折平均精度達到99.63%,這也是迄今為止正式發表的論文中的最好結果,幾乎宣告了LFW上從2008年到2015年長達8年之久的性能競賽的結束。

  盡管如此,一模一樣的技術,拿到真實環境下得到的準確率可能只有75%……也許會有些人覺得這是很可笑的,請不要笑,這是科研圈里朋友的普遍做法,不是沒有苦衷的。

  雖然目前的人臉識別技術上不完美,受環境等影響很大,但全球領先的中國face++公司已經可以做到先識別你是不是一個人了(照片肯定是不行的,即使你捂住半邊臉,依然可以識別你是一個人。)

  “人臉識別技術比人的識別能力要強,而且強不少”,北京曠視科技(face++)市場與經營部總經理謝憶楠說,“比如一個銀行柜員對人臉識別的精度可能達到萬分之一誤識率,通過率可以超過90%;而我們最好的成績是十萬分之一的誤識率,通過率可以超過97%-98%。”

  目前評價科研中算法的優劣的唯一方法就是找一個數據集,然后大家一起對比,隨著數據集中數據數量越大,其結果也越精準,于是阿里通過各種方式來收集人臉信息,比如支付寶中的未來蟻來,有一個游戲叫遇見名畫中的自己,規則是你放入帶有你人臉的照片,然后搜索跟你照片特別相似名畫,以此來收集人臉信息。筆者還做了測試,結果如下:

  至少圖像識別的結果還是比較不錯的。