好吊视频一区二区三区-国产精品V欧美精品V日韩精品-老司机亚洲精品影院-国产精品视频免费播放

物聯傳媒 旗下網站
登錄 注冊
轉換器
  • 天線作為電磁波與導行波的能量轉換器,其工作原理深刻體現了經典電磁理論與量子物理的交融。從麥克斯韋方程組的宏觀描述到量子電動力學的微觀解釋,天線技術的發展始終推動著無線通信系統的性能邊界。未來隨著量子通信和6G技術的演進,天線設計將進入納米尺度與量子調控的新紀元。
  • 一些 5G 系統的制造商正在轉向更高水平的硬件集成,并在片上系統(SoC)設備中整合射頻轉換器和基帶處理引擎,以解決功耗和電路板空間問題。
  • RF采樣轉換器可捕獲高頻信號和大帶寬信號;但是,并非每種應用都能利用需要極高速采樣的信號。就帶寬或輸出頻率不過高的情況而言,利用RF采樣轉換器的高采樣速率能力仍存在一大優勢。
  • 巴倫(Balun)也稱平衡轉換器,是微波平衡混頻器、倍頻器、推挽放大器和天線饋電網絡等平衡電路布局的關鍵部件,可以說是無線局域網射頻前端電路設計的一項關鍵技術,直接影響著無線通信的性能和質量。而差分天線饋線的主要任務就是高效率的傳輸功率,同時要保證對稱陣子的平衡饋電。而在超短波頻段,如果采用平行雙導線做其饋電,雖然能保證這種平衡性,但由于其開放式的結構,將會產生強烈的反射,為防止電磁能量的漏失和不易受氣候和環境等因素的影響,饋線通常采用屏蔽式同軸電纜,但如果直接與天線端相連,將會破壞天線本身的對稱性。這種不平衡現象不僅改變了天線的輸入阻抗匹配,而且使天線方向圖發生畸變。
  • 近年來,射頻識別(RFID)技術取得了廣泛的商業應用,特別是我國政府于2009年開始出臺相關政策,提出要大力發展物聯網技術與產業,而物聯網的核心技術之一即為RFID。在RFID系統中,天線作為能量的轉換器,在發送和接收信息的過程中實現了電磁能量的相互轉換。因此,天線的性能好壞直接影響整個系統的性能。
  • 軟件無線電提出了一種嶄新的設計、制造和使用無線通信系統與設備的思想,它擺脫了面向用途而完全依賴于硬件的傳統無線電設計思路,通過一種模塊化的通用硬件平臺,把系統提供的業務從長期依賴于固定電路的方式中解放出來,利用軟件可編程、易修改和成本低(硬件投入少)的優勢,把無線通信技術水平提升到一個新的高度。本文設計了一種基于軟件無線電中頻接收系統方案,并通過MATLAB軟件對其進行了仿真驗證。
  • 提出了一個適用于無源RFID溫度檢測標簽芯片的低壓、低功耗、快速A/D轉換的數字溫度傳感器電路。采用BJT管的Vbe電壓和PTAT電流相結合的方法,同時使用SAR A/D轉換器,避免了使用帶隙基準電壓電路所需的較高工作電壓,使電路在1 V以上就可工作。電路的功耗電流約4 μA,使用80 kHz 的時鐘,A/D轉換時間小于100 μs。
  • 無線溫度采集系統是一種基于射頻技術的無線溫度檢測裝置。系統中由溫度傳感器將溫度采集后輸出的模擬信號逐步送往信號放大電路、低通濾波器以及A/D轉換器(即信號調理電路),然后在單片機的控制下將A/D轉換器輸出的數字信號傳送到無線收發芯片中,并通過芯片的調制處理后由芯片內部的天線發送到上位機,在上位機模塊中,發送來的數據由單片機控制的無線收發芯片接收并解調,最后通過接口芯片發送到PC機中進行顯示和處理。
  • 本文討論RF數模轉換器對于通信系統的實際應用,例如有線通信、無線通信基礎設施基站、無線回程及其他此類系統;另外回顧了推動RF DAC技術發展的重要規范,以及一些用于實施此類系統的常見無線電架構;
  • 社會節奏的加快導致人們照顧小孩(尤其是嬰幼兒)、老人的時間和精力都大為減少,而嬰幼兒患肺炎等一系列疾病都會在其體溫、呼吸頻率等指標上得以反映(醫學表明肺炎患者的呼吸頻率明顯異常),老年疾病則體現在血壓等指標上。
  • 介紹美國模擬器件公司生產的TMP03和TMP04型串行比率輸出式數字溫度傳感器的性能特點、工作原理、校驗方法及使用要點。TMP03/04采用∑-Δ式A/D轉換器,能濾除量化噪聲并且達到高分辨力指標。
  • Blueroc智能停車場系統廣泛應用于各種停車場、地下車庫、小區、單位的大門口;系統由入口控制機、出口控制機、自動道閘、車輛檢測器、通訊轉換器、管理軟件,滿位顯示屏、收費顯示屏、發行機、圖象捕捉卡、攝像機、感應卡等組成。
  • AS3910還整合了正在申請專利的天線自動調諧功能,適合于各種極富挑戰性的環境。
  • 針對智能卡供電,本文提出了一種集成式DC/DC轉換器結構并分析了它的工作原理。該系統效率可達到85%,擁有足夠的魯棒性,可滿足所有復雜的 ISO7816-3規范,并已通過EMV和EMV Co認證程序1級和2級認證。該結構特別適用于便攜式收款機(POS)等智能卡應用。
  • 由于更新、更強大的處理器和DSP實現了從前難以實現的訊號處理技術,現代電子設計已變得越來越復雜。許多設計中的類比電路變得越來越小,但電路板的其他部份亦需要獲得更高性能以搭配更高的系統複雜度。隨著系統時脈速度和解析度的提高,更新、功能更強的類比數位轉換器(ADC)因應而生,為處理引擎提供訊號,同時也需要更高性能的類比前端(AFE)來驅動它們。