好吊视频一区二区三区-国产精品V欧美精品V日韩精品-老司机亚洲精品影院-国产精品视频免费播放

物聯傳媒 旗下網站
登錄 注冊
RFID世界網 >  技術文章  >  其他  >  正文

射頻電路設計常見問題盤點,還有老司機經驗總結分享給你

作者:本站收錄
來源:與非網
日期:2020-09-15 14:10:13
摘要:在實際設計時,真正實用的技巧是當這些準則和法則因各種設計約束而無法準確地實施時如何對它們進行折衷處理。
關鍵詞:射頻電路
在實際設計時,真正實用的技巧是當這些準則和法則因各種設計約束而無法準確地實施時如何對它們進行折衷處理。 
 
當然,有許多重要的 RF 設計課題值得討論,包括阻抗和阻抗匹配、絕緣層材料和層疊板以及波長和駐波等,在全面掌握各類設計原則前提下的仔細規劃是一次性成功設計的保證。 
File 5f5a0ee716f6b from gallery
一、RF 電路設計的常見問題
 
1、數字電路模塊和模擬電路模塊之間的干擾
 
如果模擬電路(射頻)和數字電路單獨工作,可能各自工作良好。但是,一旦將二者放在同一塊電路板上,使用同一個電源一起工作,整個系統很可能就不穩定。 
 
這主要是因為數字信號頻繁地在地和正電源(>3 V)之間擺動,而且周期特別短,常常是納秒級的。由于較大的振幅和較短的切換時間。使得這些數字信號包含大量且獨立于切換頻率的高頻成分。在模擬部分,從無線調諧回路傳到無線設備接收部分的信號一般小于 lμV。 
 
因此數字信號與射頻信號之間的差別會達到 120 dB。顯然.如果不能使數字信號與射頻信號很好地分離。微弱的射頻信號可能遭到破壞,這樣一來,無線設備工作性能就會惡化,甚至完全不能工作。 
 
2、供電電源的噪聲干擾
 
射頻電路對于電源噪聲相當敏感,尤其是對毛刺電壓和其他高頻諧波。微控制器會在每個內部時鐘周期內短時間突然吸人大部分電流,這是由于現代微控制器都采用 CMOS 工藝制造。 
 
因此,假設一個微控制器以 lMHz 的內部時鐘頻率運行,它將以此頻率從電源提取電流。 
 
如果不采取合適的電源去耦,必將引起電源線上的電壓毛刺。如果這些電壓毛刺到達電路 RF 部分的電源引腳,嚴重時可能導致工作失效。 
 
3、不合理的地線
 
如果 RF 電路的地線處理不當,可能產生一些奇怪的現象。對于數字電路設計,即使沒有地線層,大多數數字電路功能也表現良好。而在 RF 頻段,即使一根很短的地線也會如電感器一樣作用。
 
粗略地計算,每毫米長度的電感量約為 l nH,433 MHz 時 10 toni PCB 線路的感抗約 27Ω。如果不采用地線層,大多數地線將會較長,電路將無法具有設計的特性。 
 
4、天線對其他模擬電路部分的輻射干擾
 
在 PCB 電路設計中,板上通常還有其他模擬電路。 
 
例如,許多電路上都有模,數轉換(ADC)或數/模轉換器(DAC)。射頻發送器的天線發出的高頻信號可能會到達 ADC 的模擬淙攵恕R蛭 魏蔚緶廢唄范伎贍莧縑煜咭謊⒊齷蚪郵誖 F 信號。如果 ADC 輸入端的處理不合理,RF 信號可能在 ADC 輸入的 ESD 二極管內自激。從而引起 ADC 偏差。
2
二、五大經驗總結
 
1、射頻電路布局原則
 
在設計 RF 布局時,必須優先滿足以下幾個總原則: 
 
(1)盡可能地把高功率 RF 放大器(HPA)和低噪音放大器(LNA)隔離開來,簡單地說,就是讓高功率 RF 發射電路遠離低功率 RF 接收電路; 
 
(2)確保 PCB 板上高功率區至少有一整塊地,最好上面沒有過孔,當然,銅箔面積越大越好; 
 
(3)電路和電源去耦同樣也極為重要; 
 
(4)RF 輸出通常需要遠離 RF 輸入; 
 
(5)敏感的模擬信號應該盡可能遠離高速數字信號和 RF 信; 
 
2、物理分區、電氣分區設計分區
 
可以分解為物理分區和電氣分區。物理分區主要涉及元器件布局、朝向和屏蔽等問題;電氣分區可以繼續分解為電源分配、RF 走線、敏感電路和信號以及接地等的分區。 
 
1)我們討論物理分區問題: 
 
元器件布局是實現一個優秀 RF 設計的關鍵,最有效的技術是首先固定位于 RF 路徑上的元器件,并調整其朝向以將 RF 路徑的長度減到最小,使輸入遠離輸出,并盡可能遠地分離高功率電路和低功率電路。 
 
最有效的電路板堆疊方法是將主接地面(主地)安排在表層下的第二層,并盡可能將 RF 線走在表層上。將 RF 路徑上的過孔尺寸減到最小不僅可以減少路徑電感,而且還可以減少主地上的虛焊點,并可減少 RF 能量泄漏到層疊板內其他區域的機會。 
 
在物理空間上,像多級放大器這樣的線性電路通常足以將多個 RF 區之間相互隔離開來,但是雙工器、混頻器和中頻放大器 / 混頻器總是有多個 RF/IF 信號相互干擾,因此必須小心地將這一影響減到最小。 
3
2)RF 與 IF 走線應盡可能走十字交叉,并盡可能在它們之間隔一塊地: 
 
正確的 RF 路徑對整塊 PCB 板的性能而言非常重要,這也就是為什么元器件布局通常在手機 PCB 板設計中占大部分時間的原因。 
 
在手機 PCB 板設計上,通常可以將低噪音放大器電路放在 PCB 板的某一面,而高功率放大器放在另一面,并最終通過雙工器把它們在同一面上連接到 RF 端和基帶處理器端的天線上。 
 
需要一些技巧來確保直通過孔不會把 RF 能量從板的一面傳遞到另一面,常用的技術是在兩面都使用盲孔。 
 
可以通過將直通過孔安排在 PCB 板兩面都不受 RF 干擾的區域來將直通過孔的不利影響減到最小。
 
有時不太可能在多個電路塊之間保證足夠的隔離,在這種情況下就必須考慮采用金屬屏蔽罩將射頻能量屏蔽在 RF 區域內,金屬屏蔽罩必須焊在地上,必須與元器件保持一個適當距離,因此需要占用寶貴的 PCB 板空間。
盡可能保證屏蔽罩的完整非常重要,進入金屬屏蔽罩的數字信號線應該盡可能走內層,而且最好走線層的下面一層 PCB 是地層。 
 
RF 信號線可以從金屬屏蔽罩底部的小缺口和地缺口處的布線層上走出去,不過缺口處周圍要盡可能地多布一些地,不同層上的地可通過多個過孔連在一起。 
 
3)恰當和有效的芯片電源去耦也非常重要: 
 
許多集成了線性線路的 RF 芯片對電源的噪音非常敏感,通常每個芯片都需要采用高達四個電容和一個隔離電感來確保濾除所有的電源噪音。 
 
一塊集成電路或放大器常常帶有一個開漏極輸出,因此需要一個上拉電感來提供一個高阻抗 RF 負載和一個低阻抗直流電源,同樣的原則也適用于對這一電感端的電源進行去耦。 
 
有些芯片需要多個電源才能工作,因此你可能需要兩到三套電容和電感來分別對它們進行去耦處理,電感極少并行靠在一起,因為這將形成一個空芯變壓器并相互感應產生干擾信號,因此它們之間的距離至少要相當于其中一個器件的高度,或者成直角排列以將其互感減到最小。 
 
4)電氣分區原則大體上與物理分區相同,但還包含一些其它因素:
 
 
手機的某些部分采用不同工作電壓,并借助軟件對其進行控制,以延長電池工作壽命。這意味著手機需要運行多種電源,而這給隔離帶來了更多的問題。
 
 
 
電源通常從連接器引入,并立即進行去耦處理以濾除任何來自線路板外部的噪聲,然后再經過一組開關或穩壓器之后對其進行分配。 
 
手機 PCB 板上大多數電路的直流電流都相當小,因此走線寬度通常不是問題,不過,必須為高功率放大器的電源單獨走一條盡可能寬的大電流線,以將傳輸壓降減到最低。 
 
為了避免太多電流損耗,需要采用多個過孔來將電流從某一層傳遞到另一層。此外,如果不能在高功率放大器的電源引腳端對它進行充分的去耦,那么高功率噪聲將會輻射到整塊板上,并帶來各種各樣的問題。 
 
高功率放大器的接地相當關鍵,并經常需要為其設計一個金屬屏蔽罩。在大多數情況下,同樣關鍵的是確保 RF 輸出遠離 RF 輸入。這也適用于放大器、緩沖器和濾波器。
 
在最壞情況下,如果放大器和緩沖器的輸出以適當的相位和振幅反饋到它們的輸入端,那么它們就有可能產生自激振蕩。在最好情況下,它們將能在任何溫度和電壓條件下穩定地工作。 
 
實際上,它們可能會變得不穩定,并將噪音和互調信號添加到 RF 信號上。如果射頻信號線不得不從濾波器的輸入端繞回輸出端,這可能會嚴重損害濾波器的帶通特性。
 
為了使輸入和輸出得到良好的隔離,首先必須在濾波器周圍布一圈地,其次濾波器下層區域也要布一塊地,并與圍繞濾波器的主地連接起來。把需要穿過濾波器的信號線盡可能遠離濾波器引腳也是個好方法。 
 
此外,整塊板上各個地方的接地都要十分小心,否則會在引入一條耦合通道。有時可以選擇走單端或平衡 RF 信號線,有關交叉干擾和 EMC/EMI 的原則在這里同樣適用。
 
平衡 RF 信號線如果走線正確的話,可以減少噪聲和交叉干擾,但是它們的阻抗通常比較高,而且要保持一個合理的線寬以得到一個匹配信號源、走線和負載的阻抗,實際布線可能會有一些困難。 
 
緩沖器可以用來提高隔離效果,因為它可把同一個信號分為兩個部分,并用于驅動不同的電路,特別是本振可能需要緩沖器來驅動多個混頻器。 
 
當混頻器在 RF 頻率處到達共模隔離狀態時,它將無法正常工作。緩沖器可以很好地隔離不同頻率處的阻抗變化,從而電路之間不會相互干擾。 
 
緩沖器對設計的幫助很大,它們可以緊跟在需要被驅動電路的后面,從而使高功率輸出走線非常短,由于緩沖器的輸入信號電平比較低,因此它們不易對板上的其它電路造成干擾。 
 
壓控振蕩器(VCO)可將變化的電壓轉換為變化的頻率,這一特性被用于高速頻道切換,但它們同樣也將控制電壓上的微量噪聲轉換為微小的頻率變化,而這就給 RF 信號增加了噪聲。 
 
5)要保證不增加噪聲必須從以下幾個方面考慮: 
 
首先,控制線的期望頻寬范圍可能從 DC 直到 2MHz,而通過濾波來去掉這么寬頻帶的噪聲幾乎是不可能的;其次,VCO 控制線通常是一個控制頻率的反饋回路的一部分,它在很多地方都有可能引入噪聲。 
 
因此必須非常小心處理 VCO 控制線。要確保 RF 走線下層的地是實心的,而且所有的元器件都牢固地連到主地上,并與其它可能帶來噪聲的走線隔離開來。 
 
此外,要確保 VCO 的電源已得到充分去耦,由于 VCO 的 RF 輸出往往是一個相對較高的電平,VCO 輸出信號很容易干擾其它電路,因此必須對 VCO 加以特別注意。 
 
事實上,VCO 往往布放在 RF 區域的末端,有時它還需要一個金屬屏蔽罩。諧振電路(一個用于發射機,另一個用于接收機)與 VCO 有關,但也有它自己的特點。 
 
簡單地講,諧振電路是一個帶有容性二極管的并行諧振電路,它有助于設置 VCO 工作頻率和將語音或數據調制到 RF 信號上。所有 VCO 的設計原則同樣適用于諧振電路。由于諧振電路含有數量相當多的元器件、板上分布區域較寬以及通常運行在一個很高的 RF 頻率下,因此諧振電路通常對噪聲非常敏感。 
 
信號通常排列在芯片的相鄰腳上,但這些信號引腳又需要與相對較大的電感和電容配合才能工作,這反過來要求這些電感和電容的位置必須靠得很近,并連回到一個對噪聲很敏感的控制環路上。要做到這點是不容易的。 
 
自動增益控制(AGC)放大器同樣是一個容易出問題的地方,不管是發射還是接收電路都會有 AGC 放大器。AGC 放大器通常能有效地濾掉噪聲,不過由于手機具備處理發射和接收信號強度快速變化的能力。 
 
因此要求 AGC 電路有一個相當寬的帶寬,而這使某些關鍵電路上的 AGC 放大器很容易引入噪聲。設計 AGC 線路必須遵守良好的模擬電路設計技術,而這跟很短的運放輸入引腳和很短的反饋路徑有關,這兩處都必須遠離 RF、IF 或高速數字信號走線。 
 
同樣,良好的接地也必不可少,而且芯片的電源必須得到良好的去耦。如果必須要在輸入或輸出端走一根長線,那么最好是在輸出端,通常輸出端的阻抗要低得多,而且也不容易感應噪聲。 
 
通常信號電平越高,就越容易把噪聲引入到其它電路。在所有 PCB 設計中,盡可能將數字電路遠離模擬電路是一條總的原則,它同樣也適用于 RF PCB 設計。 
 
公共模擬地和用于屏蔽和隔開信號線的地通常是同等重要的,因此在設計早期階段,仔細的計劃、考慮周全的元器件布局和徹底的布局*估都非常重要,同樣應使 RF 線路遠離模擬線路和一些很關鍵的數字信號,所有的 RF 走線、焊盤和元件周圍應盡可能多填接地銅皮,并盡可能與主地相連。 
 
如果 RF 走線必須穿過信號線,那么盡量在它們之間沿著 RF 走線布一層與主地相連的地。如果不可能的話,一定要保證它們是十字交叉的,這可將容性耦合減到最小,同時盡可能在每根 RF 走線周圍多布一些地,并把它們連到主地。 
 
此外,將并行 RF 走線之間的距離減到最小可以將感性耦合減到最小。一個實心的整塊接地面直接放在表層下第一層時,隔離效果最好,盡管小心一點設計時其它的做法也管用。 
 
在 PCB 板的每一層,應布上盡可能多的地,并把它們連到主地面。盡可能把走線靠在一起以增加內部信號層和電源分配層的地塊數量,并適當調整走線以便你能將地連接過孔布置到表層上的隔離地塊。 
 
應當避免在 PCB 各層上生成游離地,因為它們會像一個小天線那樣拾取或注入噪音。在大多數情況下,如果你不能把它們連到主地,那么你最好把它們去掉。 
4
3、在手機 PCB 板設計時,應注意幾個方面
 
1)電源、地線的處理: 
 
既使在整個 PCB 板中的布線完成得都很好,但由于電源、 地線的考慮不周到而引起的干擾,會使產品的性能下降,有時甚至影響到產品的成功率。 
 
所以對電、地線的布線要認真對待,把電、地線所產生的噪音干擾降到最低限度,以保證產品的質量。 
 
對每個從事電子產品設計的工程人員來說都明白地線與電源線之間噪音所產生的原因,現只對降低式抑制噪音作以表述: 
 
(1)、眾所周知的是在電源、地線之間加上去耦電容。 
 
(2)、盡量加寬電源、地線寬度,最好是地線比電源線寬,它們的關系是:地線>電源線>信號線,通常信號線寬為:0.2~0.3mm,最經細寬度可達 0.05~0.07mm,電源線為 1.2~2.5 mm。對數字電路的 PCB 可用寬的地導線組成一個回路, 即構成一個地網來使用(模擬電路的地不能這樣使用) 
 
(3)、用大面積銅層作地線用,在印制板上把沒被用上的地方都與地相連接作為地線用。或是做成多層板,電源,地線各占用一層。 
 
2)數字電路與模擬電路的共地處理 
 
現在有許多 PCB 不再是單一功能電路(數字或模擬電路),而是由數字電路和模擬電路混合構成的。 
 
因此在布線時就需要考慮它們之間互相干擾問題,特別是地線上的噪音干擾。數字電路的頻率高,模擬電路的敏感度強,對信號線來說,高頻的信號線盡可能遠離敏感的模擬電路器件,對地線來說,整人 PCB 對外界只有一個結點。 
 
所以必須在 PCB 內部進行處理數、模共地的問題,而在板內部數字地和模擬地實際上是分開的它們之間互不相連,只是在 PCB 與外界連接的接口處(如插頭等)。 
 
數字地與模擬地有一點短接,請注意,只有一個連接點。也有在 PCB 上不共地的,這由系統設計來決定。
 
3)信號線布在電(地)層上 
 
在多層印制板布線時,由于在信號線層沒有布完的線剩下已經不多,再多加層數就會造成浪費也會給生產增加一定的工作量,成本也相應增加了。 
 
為解決這個矛盾,可以考慮在電(地)層上進行布線。首先應考慮用電源層,其次才是地層。因為最好是保留地層的完整性。 
 
4)大面積導體中連接腿的處理 
 
在大面積的接地(電)中,常用元器件的腿與其連接,對連接腿的處理需要進行綜合的考慮,就電氣性能而言,元件腿的焊盤與銅面滿接為好,但對元件的焊接裝配就存在一些不良隱患如:①焊接需要大功率加熱器;②容易造成虛焊點。
 
所以兼顧電氣性能與工藝需要,做成十字花焊盤,稱之為熱隔離(heat shield)俗稱熱焊盤(Thermal),這樣,可使在焊接時因截面過分散熱而產生虛焊點的可能性大大減少。多層板的接電(地)層腿的處理相同。 
 
5)布線中網絡系統的作用 
 
在許多 CAD 系統中,布線是依據網絡系統決定的。網格過密,通路雖然有所增加,但步進太小,圖場的數據量過大,這必然對設備的存貯空間有更高的要求,同時也對象計算機類電子產品的運算速度有極大的影響。 
 
而有些通路是無效的,如被元件腿的焊盤占用的或被安裝孔、定們孔所占用的等。網格過疏,通路太少對布通率的影響極大。所以要有一個疏密合理的網格系統來支持布線的進行。 
 
標準元器件兩腿之間的距離為 0.1 英寸(2.54mm),所以網格系統的基礎一般就定為 0.1 英寸(2.54 mm)或小于 0.1 英寸的整倍數,如:0.05 英寸、0.025 英寸、0.02 英寸等。 
 
4、高頻 PCB 設計技巧和方法
 
(1)傳輸線拐角要采用 45°角,以降低回損。 
 
(2)要采用絕緣常數值按層次嚴格受控的高性能絕緣電路板。這種方法有利于對絕緣材料與鄰近布線之間的電磁場進行有效管理。 
 
(3)要完善有關高精度蝕刻的 PCB 設計規范。要考慮規定線寬總誤差為+/-0.0007 英寸、對布線形狀的下切(undercut)和橫斷面進行管理并指定布線側壁電鍍條件。對布線(導線)幾何形狀和涂層表面進行總體管理,對解決與微波頻率相關的趨膚效應問題及實現這些規范相當重要。 
 
(4)突出引線存在抽頭電感,要避免使用有引線的組件。高頻環境下,最好使用表面安裝組件。 
 
(5)對信號過孔而言,要避免在敏感板上使用過孔加工(pth)工藝,因為該工藝會導致過孔處產生引線電感。 
 
(6)要提供豐富的接地層。要采用模壓孔將這些接地層連接起來防止 3 維電磁場對電路板的影響。
 
(7)要選擇非電解鍍鎳或浸鍍金工藝,不要采用 HASL 法進行電鍍。 
 
(8)阻焊層可防止焊錫膏的流動。但是,由于厚度不確定性和絕緣性能的未知性,整個板表面都覆蓋阻焊材料將會導致微帶設計中的電磁能量的較大變化。一般采用焊壩(solder dam)來作阻焊層的電磁場。 
 
這種情況下,我們管理著微帶到同軸電纜之間的轉換。在同軸電纜中,地線層是環形交織的,并且間隔均勻。在微帶中,接地層在有源線之下。 
 
這就引入了某些邊緣效應,需在設計時了解、預測并加以考慮。當然,這種不匹配也會導致回損,必須最大程度減小這種不匹配以避免產生噪音和信號干擾。 
 
5、電磁兼容性設計
 
電磁兼容性是指電子設備在各種電磁環境中仍能夠協調、有效地進行工作的能力。 
 
電磁兼容性設計的目的是使電子設備既能抑制各種外來的干擾,使電子設備在特定的電磁環境中能夠正常工作,同時又能減少電子設備本身對其它電子設備的電磁干擾。 
 
1)選擇合理的導線寬度: 
 
由于瞬變電流在印制線條上所產生的沖擊干擾主要是由印制導線的電感成分造成的,因此應盡量減小印制導線的電感量。印制導線的電感量與其長度成正比,與其寬度成反比,因而短而精的導線對抑制干擾是有利的。 
 
時鐘引線、行驅動器或總線驅動器的信號線常常載有大的瞬變電流,印制導線要盡可能地短。對于分立元件電路,印制導線寬度在 1.5mm 左右時,即可完全滿足要求;對于集成電路,印制導線寬度可在 0.2~1.0mm 之間選擇。
 
2)采用正確的布線策略: 
 
采用平等走線可以減少導線電感,但導線之間的互感和分布電容增加,如果布局允許,最好采用井字形網狀布線結構,具體做法是印制板的一面橫向布線,另一面縱向布線,然后在交叉孔處用金屬化孔相連。 
 
3)為了抑制印制板導線之間的串擾,在設計布線時應盡量避免長距離的平等走線: 
 
盡可能拉開線與線之間的距離,信號線與地線及電源線盡可能不交叉。在一些對干擾十分敏感的信號線之間設置一根接地的印制線,可以有效地抑制串擾。 
 
4)為了避免高頻信號通過印制導線時產生的電磁輻射,在印制電路板布線時,還應注意以下幾點: 
 
(1)盡量減少印制導線的不連續性,例如導線寬度不要突變,導線的拐角應大于 90 度禁止環狀走線等。 
 
(2)時鐘信號引線最容易產生電磁輻射干擾,走線時應與地線回路相靠近,驅動器應緊挨著連接器。 
 
(3)總線驅動器應緊挨其欲驅動的總線。對于那些離開印制電路板的引線,驅動器應緊緊挨著連接器。 
 
(4)數據總線的布線應每兩根信號線之間夾一根信號地線。最好是緊緊挨著最不重要的地址引線放置地回路,因為后者常載有高頻電流。
 
(5)在印制板布置高速、中速和低速邏輯電路時,應按照圖 1 的方式排列器件。
 
5)抑制反射干擾 
 
為了抑制出現在印制線條終端的反射干擾,除了特殊需要之外,應盡可能縮短印制線的長度和采用慢速電路。必要時可加終端匹配,即在傳輸線的末端對地和電源端各加接一個相同阻值的匹配電阻。 
 
根據經驗,對一般速度較快的 TTL 電路,其印制線條長于 10cm 以上時就應采用終端匹配措施。匹配電阻的阻值應根據集成電路的輸出驅動電流及吸收電流的最大值來決定。 
 
6)電路板設計過程中采用差分信號線布線策略 
 
布線非常靠近的差分信號對相互之間也會互相緊密耦合,這種互相之間的耦合會減小 EMI 發射,通常(當然也有一些例外)差分信號也是高速信號,所以高速設計規則通常也都適用于差分信號的布線,特別是設計傳輸線的信號線時更是如此。
 
這就意味著我們必須非常謹慎地設計信號線的布線,以確保信號線的特征阻抗沿信號線各處連續并且保持一個常數。
 
在差分線對的布局布線過程中,我們希望差分線對中的兩個 PCB 線完全一致。
 
這就意味著,在實際應用中應該盡最大的努力來確保差分線對中的 PCB 線具有完全一樣的阻抗并且布線的長度也完全一致。差分 PCB 線通常總是成對布線,而且它們之間的距離沿線對的方向在任意位置都保持為一個常數不變。通常情況下,差分線對的布局布線總是盡可能地靠近。