好吊视频一区二区三区-国产精品V欧美精品V日韩精品-老司机亚洲精品影院-国产精品视频免费播放

物聯傳媒 旗下網站
登錄 注冊
有源標簽
  • 標簽進入磁場后,接收閱讀器發出的射頻信號,憑借感應電流所獲得的能量發送出存儲在芯片中的產品信息(Passive Tag,無源標簽或被動標簽),或者主動發送某一頻率的信號(Active Tag,有源標簽或主動標簽);解讀器讀取信息并解碼后,送至中央信息系統進行有關數據處理。
  • 目前市場上無源電子標簽占市場的80%,而無源電子標簽只占20%不到,那么有源標簽和無源標簽有什么區別和聯系呢?
  • 首先弄清無源標簽的供電機理,繼而針對UHF RFID空中接口的應用環境進行分析,才可能尋得完整的解決方案。
  • 隨著閱讀器與標簽價格的降低和全球市場的擴大,射頻標識RFID(以下簡稱RFID)的應用與日俱增。標簽既可由閱讀器供電(無源標簽),也可以由標簽的板上電源供電(半有源標簽和有源標簽)。由于亞微型無源CMOS標簽的成本降低,庫存和其他應用迅速增加。一些評估表明,隨著無源標簽的價格持續下降,幾乎每一個售出產品的內部都將有一個RFID標簽。由于無源RFID標簽的重要性及其獨特的工程實現的挑戰性,本文將重點研究無源標簽系統。
  • RFID標簽包含天線和芯片,二者均具有復數阻抗。對于無源標簽來說,因為標簽工作所需功耗全部來源于讀寫器發射的射頻能量,所以天線和芯片之間能否實現良好的匹配和功率傳輸,直接影響到系統功能的實現,也很大程度上決定了標簽的關鍵性能。
  • 工作在125或134kHz低頻(LF)或者13.56MHz高頻(HF)范圍內的電感回路無源RFID系統,其工作距離僅限于大約1m的范圍。UHF RFID系統工作在860至960MHz以及2.4GHZ的工業科學醫療(ISM)頻段。其具有更長的工作距離,對無源標簽而言典型工作范圍為3至10m。標簽從閱讀器的射頻信號接收信息和工作能量。如果標簽在閱讀器的范圍內,就會在標簽的天線上感應出交變的射頻電壓。該電壓經過整流后為標簽提供直流(DC)電源電壓。通過調制天線端口的阻抗來實現標簽對閱讀器的響應。這樣一來,標簽將信號反向散射給閱讀器。
  • 近年來射頻識別(Radio Frequency of IdenTIficaTIo,RFID)技術的應用逐漸廣泛,同時也倍受重視。特別是UHF頻段的RFID系統,由于其傳輸距離遠、傳輸速率高,受到了更多地關注。典型的RFID系統由RFID閱讀器和標簽兩部分組成,RFID無源標簽依靠RFID閱讀器發射的電磁信號供電,并通過反射調制電磁信號與閱讀器通信。因此,RFID標簽天線設計的優劣對其系統工作性能有關鍵的影響。
  • 射頻識別(RFID)技術近年來得到了廣泛的重視和應用。UHF頻段的RFID 系統,由于其傳輸距離遠、傳輸速率高,受到了更多地關注。典型的RFID系統由RFID 閱讀器和標簽兩部分組成,RFID無源標簽依靠RFID 閱讀器發射的電磁信號供電,并通過反射調制電磁信號與閱讀器通信。因此,RFID讀寫器天線設計的優劣對其系統工作性能有關鍵的影響。
  • 近年來射頻識別(Radio Frequency of Identificatio,RFID)技術的應用逐漸廣泛,同時也倍受重視。特別是UHF頻段的RFID系統,由于其傳輸距離遠、傳輸速率高,受到了更多地關注。典型的RFID系統由RFID閱讀器和標簽兩部分組成,RFID無源標簽依靠RFID閱讀器發射的電磁信號供電,并通過反射調制電磁信號與閱讀器通信。因此,RFID標簽天線設計的優劣對其系統工作性能有關鍵的影響。
  • RFID標簽芯片的靈敏度是芯片剛剛被激活所需的最小能量。靈敏度是標簽芯片最重要的性能指標,它的大小直接影響RFID標簽的性能,例如標簽讀/寫距離等。因此標簽芯片靈敏度準確測試是芯片測試的重要內容之一。
  • 隨著閱讀器與標簽價格的降低和全球市場的擴大,射頻標識RFID(以下簡稱RFID)的應用與日俱增。標簽既可由閱讀器供電(無源標簽),也可以由標簽的板上電源供電(半有源標簽和有源標簽)。由于亞微型無源CMOS標簽的成本降低,庫存和其他應用迅速增加。一些評估表明,隨著無源標簽的價格持續下降,幾乎每一個售出產品的內部都將有一個RFID標簽。
  • 射頻識別系統在過去的幾年中有了顯著的改善,現在實現了接近百分之百的讀取率并實現了RFID專家的愿景。要實現一個運行如此良好的系統,必須考慮到許多因素,并做出正確的選擇。
  • 介紹了UHF RFID無源標簽的供電特點,即采用無線功率傳輸供電,或利用片上儲能電容充放電實現對芯片電路供電。同時為保證通信需求,應該做到充電與放電供需平衡,可取的設計是將標簽所接收的射頻能量大部分用于浮充供電;為集中更多能量用于浮充供電,應當盡量減少射頻能量的其它應用消耗,包括接收時段的解調解碼、應答時段的調制和發送。
  • 當前RFID標簽技術有著極為廣泛的應用,為了減少RFID標簽的制造成本和提高工作的可靠性,提出了一種有機補償電路。該電路集成了8個階段的有機整流器,其最高工作頻率可以達到14 MHz,以及一個集成的PUF結構,它產生一個不可克隆的隨機碼,每一個獨立的結構生成自己的代碼,并可以準確地從其他電路中識別出來,耦合這兩個電路以及天線將可以建立一個RFID無源標簽。該方案可以應用于塑料薄膜中逐片有機處理的RFID標簽中,方便設計和制造出復雜的全有機電路。
  • 由于無源RFID標簽的重要性及其獨特的工程實現的挑戰性,本文將重點研究無源標簽系統。
  • 隨著閱讀器與標簽價格的降低和全球市場的擴大,射頻標識RFID(以下簡稱RFID)的應用與日俱增。標簽既可由閱讀器供電(無源標簽),也可以由標簽的板上電源供電(半有源標簽和有源標簽)。由于亞微型無源 CMOS 標簽的成本降低,庫存和其他應用迅速增加。一些評估表明,隨著無源標簽的價格持續下降,幾乎每一個售出產品的內部都將有一個 RFID 標簽。由于無源RFID 標簽的重要性及其獨特的工程實現的挑戰性,本文將重點研究無源標簽系統。
  • 本文從有源標簽的設計理念出發,針對一般小范圍空間RFID定位的需求,根據低功耗、高效率的原則提出了一種用于定位的低功耗有源RFID標簽的設計方案。
  • 在REID系統中,由于使用的電子標簽常常是無源的,市無源標簽需要在讀寫器的通信過程中獲得自身的能量供應。為了保證系統的正常工作,信道編碼方式首先必須保證不能中斷讀寫器對電子標簽的能量供應。另外,作為保障系統可靠工作的需要,還必須在編碼中提供數據一級的校驗保護,編碼方式應該提供這T功能,并可以根據碼型的變化來判斷是否發生誤碼或有電子標簽沖突發生。
  • 為了提高采用射頻識別技術進行定位的精度,針對無源標簽射頻識別技術及采用BP神經網絡對其定位精度的改善進行了研究。首先建立了基于無源標簽的射頻識別定位系統,之后建立了相應的BP神經網絡,并通過實驗進行了驗證。實驗結果表明,在60 cm×50 cm的區域內,通過四角布置四個天線,利用信號強度作為輸入信號,采用BP神經網絡可以將定位誤差控制在2 cm以內,平均歐幾里得誤差控制在1以內。說明采用BP神經網絡可以改善射頻識別定位技術的精度。
  • 本文從有源標簽的設計理念出發,針對一般小范圍空間RFID定位的需求,根據低功耗、高效率的原則提出了一種用于定位的低功耗有源RFID標簽的設計方案。
  • 中心議題:RFID(射頻標識)測試技術分析 研究無源標簽系統;解決方案:使用RTSA測量TAT安裝頻率模板觸發器,對RFID產品的性能進行優化。
  • 近年來射頻識別(Radio Frequency of Identificatio,RFID)技術的應用逐漸廣泛,同時也倍受重視。特別是UHF頻段的RFID系統,由于其傳輸距離遠、傳輸速率高,受到了更多地關注。典型的RFID系統由RFID閱讀器和標簽兩部分組成,RFID無源標簽依靠RFID閱讀器發射的電磁信號供電,并通過反射調制電磁信號與閱讀器通信。因此,RFID標簽天線設計的優劣對其系統工作性能有關鍵的影響。
  • 本文介紹了有源標簽的設計理念出發,針對煤礦井下一般小范圍空間RFID定位的需求,根據低功耗、高效率的原則進行RFID標簽的設計。系統在硬件上采用了單片機和nRF24L01射頻芯片的低功耗組合;軟件上則結合了RFID定位的特點,介紹了有別于一般以識別為主要目的的標簽的設計方法,并分析了其軟件設計流程以及簡單的防沖突能力。通過良好匹配的天線,本設計有效讀取距離可達幾十米,足以應付一般空間內定位的需求。
  • 有源標簽在設計中除了需要考慮低成本、小型化之外,最重要的是要采取低功耗設計。
  • 隨著閱讀器與標簽價格的降低和全球市場的擴大,射頻標識 RFID(以下簡稱RFID)的應用與日俱增。標簽既可由閱讀器供電(無源標簽),也可以由標簽的板上電源供電(半有源標簽和有源標簽)。
  • 本文提出了基于商用0.18μm CMOS工藝的EPC Global Class-1 Generation-2 UHF RFID標簽電路設計。
  • RFID標簽按供電方式分為有源和無源2種[1],無源標簽通過捕獲閱讀器發射的電磁波獲取能量,具有成本低、尺寸小的優勢;有源標簽通常采用電池供電,具有通信距離遠、讀取速度快、可靠性好等優點[2],但為了滿足煤礦井下定位,需要考慮低功耗設計以增強電池的續航能力。
  • 射頻識別(RFID)技術近年來在國內外得到了迅速發展。對于需要電池供電的便攜式系統,功耗也越來越受到人們的重視。本文將具體闡述基于 MSP430 F2012和CC1100低功耗設計理念的雙向有源標簽的軟硬件實現方法。
  • 在此針對ISO18000-6C/B標準,研究和分析了UHF RFID無源標簽芯片的系統組成以及模擬射頻前端的電路方案。基于Cadence Spectre設計仿真平臺和TSMCO.18μm CMOS混合信號工藝,對模擬射頻前端的整流電路、穩壓電路、ASK調制/解調電路、上電復位電路、時鐘產生電路等核心模塊進行了設計與仿真,通過MPW項目流片實現。最后,給出了芯片各模塊的測試結果。
  • 本文介紹了有源標簽的設計理念出發,針對煤礦井下一般小范圍空間RFID定位的需求,根據低功耗、高效率的原則進行RFID標簽的設計。
  • 本文介紹了有源標簽的設計理念出發,針對煤礦井下一般小范圍空間RFID定位的需求,根據低功耗、高效率的原則進行RFID標簽的設計。系統在硬件上采用了MSP430F2012單片機和nRF24L01射頻芯片的低功耗組合;軟件上則結合了RFID定位的特點,介紹了有別于一般以識別為主要目的的標簽的設計方法,并分析了其軟件設計流程以及簡單的防沖突能力。通過良好匹配的天線,本設計有效讀取距離可達幾十米,足以應付一般空間內定位的需求。
  • 些評估表明,隨著無源標簽的價格持續下降,幾乎每一個售出產品的內部都將有一個 RFID 標簽。由于無源 RFID 標簽的重要性及其獨特的工程實現的挑戰性,本文將重點研究無源標簽系統。