好吊视频一区二区三区-国产精品V欧美精品V日韩精品-老司机亚洲精品影院-国产精品视频免费播放

物聯傳媒 旗下網站
登錄 注冊
電磁
  • 天線作為電磁波與導行波的能量轉換器,其工作原理深刻體現了經典電磁理論與量子物理的交融。從麥克斯韋方程組的宏觀描述到量子電動力學的微觀解釋,天線技術的發展始終推動著無線通信系統的性能邊界。未來隨著量子通信和6G技術的演進,天線設計將進入納米尺度與量子調控的新紀元。
  • 在無線通信系統中,天線的空間布局直接影響信號接收的穩定性和覆蓋范圍。傳統XY平面天線雖然能滿足基本通信需求,但在復雜電磁環境或移動場景下,僅依賴XY軸天線可能導致信號接收不完整,尤其是在垂直方向上信號衰減嚴重。Z軸天線的引入彌補了這一缺陷,使系統能夠在三維空間內實現更均衡的信號接收。然而,出于成本考慮,許多PKE和RFID系統在實際應用中僅采用2個XY軸天線或1個XY軸天線,而舍棄Z軸天線,導致感應距離縮短、信號盲區增加等問題。本文將從Z軸天線的應用原理、實際應用場景及市場常用型號對比等方面,探討Z軸天線的重要性及優化選擇策略。
  • 優化高多層PCB線路板的層疊結構是提升其整體性能的關鍵步驟,以下從信號完整性、電源完整性、電磁兼容性、散熱性能四大核心目標出發,結合具體優化策略和案例進行說明:
  • 1 RFID天線:無線數據交換的橋梁 RFID天線,作為無線數據交換系統中的發送與接收元件,利用電磁場作為媒介,實現了信息的遠程傳輸與識別。 2. RFID系統的兩大核心組件 一個完整的RFID系統由兩部分組成: RFID應答器天線:位于待識別物體上,負責接收讀寫器發出的信號。 讀寫器(詢問器):根據設計和技術不同,可實現只讀或讀寫功能,是信息交換的發起者。 3.RFID天線的工作原理 讀寫器通過天線發射電磁波,RFID標簽天線接收到這些波后,將數據傳遞給標簽系統芯片,進而觸發預設動作,如返回電子代碼或執行系統指令。RFID 天線經過調諧,僅在以指定 RFID 系統頻率為中心的窄帶載波頻率范圍內產生諧振。這一過程高效且準確,是現代物聯網、物流追蹤等領域不可或缺的技術支撐。
  • 直流電阻與交流電阻的本質差異源于電流特性的不同:直流電阻反映材料與幾何的固有屬性,而交流電阻需綜合考慮頻率、電磁場分布及寄生參數。在工程實踐中,需根據電路工作頻率選擇合適的測量方法與模型。例如,低頻電路可忽略交流電阻的復雜效應,而高頻電路則需采用分布參數模型進行精確設計。隨著5G通信、電力電子等技術的發展,對交流電阻的深入理解將成為優化系統性能的關鍵。
  • 在電子學理論中,電流流過導體,導體周圍會形成磁場;交變電流通過導體,導體周圍會形成交變的電磁場,稱為電磁波。
  • 為解決 5G 通信系統電磁波傳播面臨的電磁干擾問題,浙江大學課題團隊開展了電磁輻射抑制研究,提出了面向 5G 通信天線系統和 5G 通信芯片封裝的電磁兼容解決方案。
  • RFID是一種無線技術,可以利用電磁場來識別并跟蹤貼有RFID標簽的物品。在跟蹤和優化資產的應用領域,特別是對效率和可靠性更為敏感的場景中,近年來RFID顯示出了巨大的潛力。
  • 電磁干擾(EMI)已經成為我們生活的一部分,要不要處理呢?許多人認為,電子解決方案的廣泛應用是一件好事,因為它給我們的生活帶來舒適、安全的享受,并把醫療服務帶到我們的身邊。但是,這些解決方案同時也產生了具有電子危害的EMI信號。
  • RFID讀頭通過天線與RFID電子標簽進行無線通信,可以實現對標簽識別碼和內存數據的讀出或寫入操作。典型的rfid讀頭包含有RFID射頻模塊(發送器和接收器)、控制單元以及閱讀器天線。
  • 現代民用及軍用設施使用電子設備繁多,電磁環境復雜,相互干擾嚴重。一般地,車、船和飛機上的通信設備收發機都集成在一起。以短波通信設備為例,發射機的殘余信號在接收機輸入端產生的電平達120dBμV(即13dBm)或更高。而接收機所需接收的微弱信號電平可能僅-6~0dBμV(即-117~-113dBm)。
  • RFlD是射頻識別技術(Radio Frequency denti-fieation)的英文縮寫,又稱電子標簽,是一項利用射頻信號通過空間耦合(交變磁場或電磁場)實現無接觸信息傳遞并通過所傳遞的信息達到識別目的的技術。RFID的最早應用可追溯到第二次世界大戰中用于區分聯軍和納粹飛機的“敵我辨識”系統。與目前廣泛使用的自動識別技術如條碼、磁卡、 IC卡等相比。
  • RFID技術和基于RFID發展起來的NFC技術都是屬于近場通訊的范疇,在物聯網領域都有極大的應用。兩者都基于電磁感應原理,利用無線射頻信號對目標進行識別和通訊,讀寫距離是評估其系統的重要指標,而標簽的諧振頻率是影響這個指標的關鍵參數。
  • 本研究基于兩個變型彎折偶極子天線,通過引入合適的饋電結構同時進行饋電,使天線的帶寬得以拓寬。并基于電磁仿真軟件Ansoft HFSS的仿真分析,設計并加工了一個實物天線。實測結果與仿真結果吻合良好,驗證了該設計的有效性。
  • RFID無線射頻識別技術(Radio Frequency IdentificaTIon,RFID)的應用由來已久,最早可追溯到第二次世界大戰時,英國空軍飛機使用的敵我飛機識別系統。最近RFID無線射頻識別技術被廣泛應用于物品管理、車輛定位以及井下人員定位等。該技術是一種非接觸的自動識別技術,利用無線射頻信號通過空間耦合(交變磁場或電磁場)實現無接觸信息傳遞并通過所傳遞的信息達到自動識別目的。
  • 近年來射頻識別(Radio Frequency of IdenTIficaTIo,RFID)技術的應用逐漸廣泛,同時也倍受重視。特別是UHF頻段的RFID系統,由于其傳輸距離遠、傳輸速率高,受到了更多地關注。典型的RFID系統由RFID閱讀器和標簽兩部分組成,RFID無源標簽依靠RFID閱讀器發射的電磁信號供電,并通過反射調制電磁信號與閱讀器通信。因此,RFID標簽天線設計的優劣對其系統工作性能有關鍵的影響。
  • 巴倫(Balun)也稱平衡轉換器,是微波平衡混頻器、倍頻器、推挽放大器和天線饋電網絡等平衡電路布局的關鍵部件,可以說是無線局域網射頻前端電路設計的一項關鍵技術,直接影響著無線通信的性能和質量。而差分天線饋線的主要任務就是高效率的傳輸功率,同時要保證對稱陣子的平衡饋電。而在超短波頻段,如果采用平行雙導線做其饋電,雖然能保證這種平衡性,但由于其開放式的結構,將會產生強烈的反射,為防止電磁能量的漏失和不易受氣候和環境等因素的影響,饋線通常采用屏蔽式同軸電纜,但如果直接與天線端相連,將會破壞天線本身的對稱性。這種不平衡現象不僅改變了天線的輸入阻抗匹配,而且使天線方向圖發生畸變。
  • 無線射頻識別(RFID)技術是一種非接觸式的自動識別技術,它通過射頻信號從目標對象讀寫相關數據實現自動識別。RFID基本系統由標簽、閱讀器以及讀 寫器天線3部分組成。RFID技術利用射頻信號作為信息傳輸中介實現遠距離信息獲取,通過高數據速率實現對高速運動物體的識別,并可同時識別多個標簽。正由于RFID技術的諸多優點,它在物流管理、公共安全、倉儲管理、門禁防偽等方面的應用迅速展開,國際上很多學者也已開展RFID技術與互聯網、移動通信 網絡等技術結合應用的研究。將RFID技術融入互聯網技術和移動通信網技術中將可實現全球范圍內物品跟蹤與信息共享,那么,真正的“物聯網”時代也就指日可待了。
  • RFID無線射頻識別技術(Radio Frequency IdentificaTIon,RFID)的應用由來已久,最早可追溯到第二次世界大戰時,英國空軍飛機使用的敵我飛機識別系統。最近RFID無線射頻識別技術被廣泛應用于物品管理、車輛定位以及井下人員定位等。該技術是一種非接觸的自動識別技術,利用無線射頻信號通過空間耦合(交變磁場或電磁場)實現無接觸信息傳遞并通過所傳遞的信息達到自動識別目的。
  • RFID系統是以電磁信號為媒介進行數據傳輸的自動識別技術,與傳統條形碼技術相比,其優勢在于識別對象與讀取設備之間通信穿透性強、距離較遠、數據傳輸量大和適應環境能力強等,因此在物流跟蹤、倉儲管理和物品定位等方面得到廣泛應用。RFID主要由讀寫器和標簽兩部分組成,標簽一般貼附在物品上,接收讀寫器信號并將ID信息發回讀寫器。目前,RFID標簽仍無法取代條形碼的一個重要因素是成本仍然較高,而在整個標簽成本中芯片占有較大比重,因此近年有關無芯片標簽的研究和應用得到了廣泛關注。
  • 射頻識別(RFID)技術是一種利用電磁發射或電磁耦合實現無接觸信息傳遞,進而自動識別和獲取目標對象信息數據的技術。作為一種穩定、可靠、快速采集數據并對數據進行加工的新興技術,RFID得到了廣泛應用并突顯其強大的實用價值。但RFID技術在安全隱私問題上面臨著諸多挑戰。為此,本文在已有的RFID協議基礎上,通過分析其執行過程及優缺點,提出一種新的基于Hash的RFID雙向認證協議,并進行了安全性分析和比較。
  • 電磁兼容的問題常發生于高頻狀態下,個別問題(電壓跌落與瞬時中斷等)除外。高頻思維,總而言之,就是器件的特性、電路的特性,在高頻情況下和常規中低頻 狀態下是不一樣的,如果仍然按照普通的控制思維來判斷分析,則會走入設計的誤區。
  • 射頻識別(RFID)技術近年來得到了廣泛的重視和應用。UHF頻段的RFID 系統,由于其傳輸距離遠、傳輸速率高,受到了更多地關注。典型的RFID系統由RFID 閱讀器和標簽兩部分組成,RFID無源標簽依靠RFID 閱讀器發射的電磁信號供電,并通過反射調制電磁信號與閱讀器通信。因此,RFID讀寫器天線設計的優劣對其系統工作性能有關鍵的影響。
  • 螺旋天線(helical antenna)是一種具有螺旋形狀的天線。它由導電性能良好的金屬螺旋線組成,通常用同軸線饋電,同軸線的心線和螺旋線的一端相連接,同軸線的外導體則和接地的金屬網(或板)相連接。螺旋天線的輻射方向與螺旋線圓周長有關。當螺旋線的圓周長比一個波長小很多時,輻射最強的方向垂直于螺旋軸;當螺旋線圓周長為一個波長的數量級時,最強輻射出現在螺旋旋軸方向上。螺旋天線是天線的一種,可以收發空間中旋轉的偏振電磁信號。這種天線通常用在衛星通訊的地面站中。用非平衡饋線,比如同軸電纜來 螺旋天線連接天線,電纜中心連接在天線的螺旋部分,電纜的外皮連接在反射器上。
  • 近年來射頻識別(Radio Frequency of Identificatio,RFID)技術的應用逐漸廣泛,同時也倍受重視。特別是UHF頻段的RFID系統,由于其傳輸距離遠、傳輸速率高,受到了更多地關注。典型的RFID系統由RFID閱讀器和標簽兩部分組成,RFID無源標簽依靠RFID閱讀器發射的電磁信號供電,并通過反射調制電磁信號與閱讀器通信。因此,RFID標簽天線設計的優劣對其系統工作性能有關鍵的影響。
  • RFID的英文全稱為Radio Frequency Identification,即無線射頻標識,這是一種非接觸式的自動識別技術,通過射頻信號自動識別目標對象并獲取相關數據。RFID是一門獨立的將不同的跨學科的專業技術綜合在一起,如高頻技術、微波與天線技術、電磁兼容技術、半導體技術、數據與密碼學、制造技術和應用技術等。
  • 近年來,射頻識別(RFID)技術取得了廣泛的商業應用,特別是我國政府于2009年開始出臺相關政策,提出要大力發展物聯網技術與產業,而物聯網的核心技術之一即為RFID。在RFID系統中,天線作為能量的轉換器,在發送和接收信息的過程中實現了電磁能量的相互轉換。因此,天線的性能好壞直接影響整個系統的性能。
  • 射頻識別技術(RFID),是20世紀80年代發展起來的一種新興自動識別技術,射頻識別技術是一項利用射頻信號通過空間耦合(交變磁場或電磁場)實現無接觸信息傳遞并通過所傳遞的信息達到識別目的的技術。
  • 采用有限元的方法對一選定天線的場強進行仿真分析,并結合實際測試來研究和論證的。工作頻率為13.56 MHz。基于亥姆霍茲線圈磁場疊加的原理,考慮在工作天線附近增加一開路線圈,區別是線圈與工作天線不直接相連。在電磁場環境下,附加的開路線圈感應出相應的電流和磁場進而對工作天線產生影響,并且改善工作天線的阻抗,通過調整附加線圈與工作天線之間的距離來增強所需位置的場強。此方法分析了附加線圈與工作天線之間不同的位置、距離以及附加線圈的大小和通斷等情況,給出了這些情況下工作天線的電流和磁場的變化。通過仿真和實測數據表明此方法的有效性。
  • 超高頻RFID系統,由閱讀器通過天線發射指令給標簽,完成閱讀器與標簽之間的通信。其中,閱讀器天線、標簽天線以及閱讀器天線與標簽之間的通道涉及到電磁場的相關知識,比較晦澀,但是如果解決不好,會導致系統串讀與漏讀現象發生,這也是超高頻RFID至今不穩定的根本原因所在。小編嘗試以簡單的方式細細分析。
  • 射頻識別技術作為一種快速、準確、有效的識別方式,已在醫療衛生行業得到廣泛應用。本文通過分析醫療環境中醫療設備的電磁兼容標準及相關要求,探討射頻識別(RFID)設備可能產生的潛在干擾,并提出減少干擾的措施。
  • RFID(Radio Frequency Identification)是一種非接觸式的自動識別技術,它利用射頻信號通過空間耦合(交變磁場或電磁場)實現無接觸信息傳遞并通過所傳遞的信息達到識別的目的,識別工作無須人工干預,具有數據存儲量大、可讀寫、非接觸、識別距離遠、識別速度快、保密性好、穿透性強、壽命長、環境適應性好以及能同時識別多標簽等優點,并且可工作于各種惡劣環境。